
Reviewing	your	Program

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	2.5

©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License. 1



Introduction

• A	program	is	like	an	essay	or	term	paper.
• You	wouldn't	turn	in	a	term	paper	without	
proofreading	it	for	typos,	checking	for	spelling,	
and	generally	making	improvements.

• So	you	shouldn't	turn	in	your	program	without	
checking	it	over	and	seeing	if	it	can	be	improved.

• Our	goal	is	to	write	beautiful programs–
programs	which	are	easily	read	and	understood	
by	others.

2



The	Program	Review	Recipe

• On	the	next	slide	is	a	list	of	things	to	check	in	
your	program.

• Then	we'll	go	through	each	of	the	items	in	
more	detail.

3



The	Program	Review	Recipe
1.	Do	all	the	tests	pass?
2.	Are	the	contracts	accurate?
3.	Are	the purpose	statements	and	
interpretations	clear	and	accurate?
4.	Are	there	ugly	pieces	of	code	that	should	be	
broken out	into	their	own	functions?
5.	Are	there	pieces	of	code that	are	duplicated	
(or	almost	duplicated)	and	should	be	made	into	
independent	functions?



1.	Do	all	the	tests	pass?

• Of	course	you	wouldn't	turn	in	a	program	if	
some	your	tests	failed,	but...
– Did	you	achieve	100%	code	coverage?
– Are	your	tests	readable?		
– Are	there	comments	or	error	messages	so	that	the	
TA	will	be	able	to	see	the	purpose	of	each	test?

– Are	the	tests	written	so	that	the	TA	can	easily	see	
that	each	test	actually	tests	what	it	claims	to	test?

5



2.	Are	the	contracts	accurate?

• Are	all	the	type	names	spelled	correctly	and	
consistently?

• Do	the	contract	and	function	definition	agree	
on	the	number	and	types	of	the	arguments,	
and	on	the	type	of	the	result?
– Maybe	you	discovered	along	the	way	that	you	had	
to	change	some	of	the	arguments.		Make	sure	that	
you've	changed	the	contract	to	match.

6



3.	Are	the	purpose	statements	clear	
and	accurate?

• Each	purpose	statement	is	a	set	of	short	noun	
phrases	describingwhat the	function	is	
supposed	to	return.	
– They	generally	take	the	form	GIVEN/RETURNS,	
where	each	of	these	keywords	is	followed	by	a	
short	noun	phrase.

– The	RETURNS	clause	must	at	least	mention	every	
one	of	the	function	arguments.

7



Review:	what	makes	a	good	purpose	
statement?

• It	gives	more	information	than	just	the	contract.		
For	example

GIVEN: a Number and a Boolean
RETURNS: a Number

is	not	a	good	purpose	statement
• It	is	specific.	Ideally,	a	reader	should	be	able	to	

figure	out	what	a	function	returns	just	by	
reading	the	purpose	statement
– perhaps	along	with	examples,	other	documentation,	

etc.
– but	WITHOUT	reading	the	code!



Writing	good	purpose	statements	can	
be	hard.

• Sometimes	the	arguments	are	the	
components	of	some	thing,	rather	than	the	
thing	itself.
– Here's	a	useful	example:

GIVEN:	the	x-coordinate,	y-coordinate,	and	direction	of	
some	robot
RETURNS:	the	robot	moved	forward	by	10	pixels.

– You	may	find	this	to	be	a	good	pattern	in	many	
examples.

9



Spelling	Counts

• Spelling	Counts.	Always.		Everywhere.
• Spelling	errors	show	a	lack	of	professionalism.
• They	tell	the	reader	that	you	are	SLOPPY	and	
you	DON'T	CARE.

• If	you	have	a	spelling	error	in	your	resume	or	
cover	letter,	you	will	NOT	get	the	job.

10



Reviewing	your	purpose	statements	
(cont'd)

• Check	your	purpose	statements	for	spelling.
• Make	sure	you	are	consistent	and	correct	about	
English	singular	and	plural.

• Try	to	use	English	articles,	like	"a"	and	"the",	
correctly.
– this	may	be	difficult	if	your	first	language	does	not	
have	these.

• If	English	is	not	your	first	language,	go	find	the	
best	English-speaker	you	know	and	get	help.
– We	are	officially	allowing	this.

11



The	same	things	hold	for	data	
definitions

• Go	back	and	review	your	data	definitions,	too.
• Check	over	the	English	in	your	interpretations.
• Check	the	other	items	that	you	were	
supposed	to	review—
– Here's	the	recipe,	from	Lesson	1.6

12



Reviewing	a	Data	Design
1.	Is	the	interpretation	clear	and	unambiguous?
2.	Can	you	represent	all	the	information	you	
need	for	your	program?
3.	Do you	need all	of	the	data	in	your	
representation?
4. Does	every	combination	of	values	make	
sense?	If	not,	document	the	meaningful	
combinations	with	a	WHERE	clause.

13



4.	Are	there	ugly	pieces	of	code	that	
should	be	broken	out	into	their	own	

functions?
• Remember:		one	function	=	one	task
• If	there	is	complicated	stuff	in	your	function	
definition,	replace	it	by	a	call	to	a	help	
function.

• That	way	you	can	document	what	that	stuff	is	
supposed	to	do,	and	test	it.

14



5.	Are	there	pieces	of	code	that	are	
duplicated	(or	almost	duplicated)	and	
should	be	made	into	independent	

functions?

• We	strive	for	no	duplicated	code.		
• If	there's	a	subtask	that	gets	done	several	
times,	turn	it	into	a	function	that	you	can	
document	and	test.

• We'll	have	much	more	to	say	about	this	in	
coming	weeks.

15

Principle:	 "Don't	
Repeat	Yourself"



Summary

• Our	goal	is	to	write	not	just	working	programs,	
but	beautiful programs.

• We've	given	you	a	list	of	things	to	check	
before you	turn	in	your	program.

• Fixing	these	things	will	make	your	program	
more	pleasant	for	the	reader,	whether	that	is	
your	TA,	your	boss,	or	your	successor	at	your	
job.

16



Next	Steps

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Go	on	to	the	next	lesson

17


